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Dr.Prapun’s Office:
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Sections 10.1-10.2
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Continuous RV

 𝑃 𝑋 𝑥 0
 pdf ∶ 𝑃 𝑥 𝑥 𝑥 𝛥𝑥 𝒇𝑿 𝑥 𝛥𝑥

 Two characterizing properties:
 𝑓 𝑥 0

 𝑓 𝑥 𝑑𝑥 1

 𝑆 𝑥: 𝑓 𝑥 0
 𝑃 some statement s  about 𝑋

𝑓
all the 𝑥 values that

satisfy the statement s

𝑥 𝑑𝑥

 cdf is a continuous function.

Discrete RV

 pmf: 𝒑𝑿 𝑥 ≡ 𝑃 𝑋 𝑥
 Two characterizing properties:

 𝑝 𝑥 0
 ∑ 𝑝 𝑥 1

 𝑆 𝑥: 𝑝 𝑥 0
 𝑃 some statement s  about 𝑋

𝑝 𝑥
all the 𝑥  values that

satisfy the statement s
 cdf is a staircase function with jumps whose 

size at 𝑥 𝑐 gives 𝑃 𝑋 𝑐 .
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Chapter 9 vs. Section 10.3
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Ex. rand function
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 Generate an array of uniformly 
distributed pseudorandom numbers.
 The pseudorandom values are drawn 

from the standard uniform 
distribution on the open interval 
(0,1).

 rand returns a scalar.

 rand(m,n) or rand([m,n])
returns an m-by-n matrix.
 rand(n) returns an n-by-n matrix



Ex. Muscle Activity 
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 Look at electrical activity of skeletal muscle by recording a 
human electromyogram (EMG). 

[http://www.adinstruments.com/solutions/education/ltexp/electro
myography-emg-german]



Three Important Continuous RVs
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close all; clear all;
N = 1e6; b = 20; m = 1; s = 1;
R = [1-5*s,1+5*s];
% Uniform
X = (2*sqrt(3)*(rand(1,N)-0.5))+1;
subplot(3,2,1); plot(X);
subplot(3,2,2); plotHistPdf(X,b)
xlim(R)
% Normal
X = randn(1,N)+1;
subplot(3,2,3); plot(X);
subplot(3,2,4); plotHistPdf(X,b)
xlim(R)
% Exponential
X = exprnd(1,1,N);
subplot(3,2,5); plot(X);
subplot(3,2,6); plotHistPdf(X,b)
xlim(R)



Three Important Continuous RVs
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Three Important Continuous RVs
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Three Important Continuous RVs
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Review: P[some condition(s) on X]
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For discrete random variable,

Sum over all the x values that 
satisfy the condition(s)

𝑃 some condition s  on 𝑋 𝑝 𝑥

Discrete RV



P[some condition(s) on X]
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 For discrete random variable,

 For continuous random variable,

Sum over all the x values that 
satisfy the condition(s)

𝑃 some condition s  on 𝑋 𝑝 𝑥

Discrete RV

Integrate over all the x values that 
satisfy the condition(s)

𝑃 some condition s  on 𝑋 𝑓 𝑥 𝑑𝑥

Continuous 
RV

probability mass function (pmf)

probability density function (pdf)

pmf → pdf

→



Support of a RV
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 In general, the support of a RV is any set such that 

 In this class, we try to find the smallest (minimal) set that 
works as a  support.

 For discrete random variable,

 For continuous random variable,



World Map of Population Density

14 [http://i.imgur.com/gBYMfWO.jpg]



Thailand’s Population Density
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https://www.researchgate.net/pu
blication/260378246_Climate-
Related_Hazards_A_Method_for_
Global_Assessment_of_Urban_an
d_Rural_Population_Exposure_to
_Cyclones_Droughts_and_Floods
/figures?lo=1



World Map of Population Density
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World Map of Population Density

17 http://globe.chromeexperiments.com/



“Density”
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 Density = quantity per unit of measure.

 Population Density = number of people per unit area
 Location with high density value means there are a lot of people 

around that location.
 Given a region, we integrate the density over that region to get 

the number of people residing in that region.

 Probability Density = probability per unit “length”.
 Given an interval, we integrate the density over that interval to 

get the probability that the RV will be in that interval.
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Sections 10.1-10.2
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Continuous RV

 𝑃 𝑋 𝑥 0
 pdf ∶ 𝑃 𝑥 𝑥 𝑥 𝛥𝑥 𝒇𝑿 𝑥 𝛥𝑥

 Two characterizing properties:
 𝑓 𝑥 0

 𝑓 𝑥 𝑑𝑥 1

 𝑆 𝑥: 𝑓 𝑥 0
 𝑃 some condition s  on 𝑋

𝑓
all the 𝑥 values that

satisfy the condition s

𝑥 𝑑𝑥

 cdf is a continuous function.

Discrete RV

 pmf: 𝒑𝑿 𝑥 ≡ 𝑃 𝑋 𝑥
 Two characterizing properties:

 𝑝 𝑥 0
 ∑ 𝑝 𝑥 1

 𝑆 𝑥: 𝑝 𝑥 0
 𝑃 some condition s  on 𝑋

𝑝 𝑥
all the 𝑥  values that

satisfy the condition s
 cdf is a staircase function with jumps whose 

size at 𝑥 𝑐 gives 𝑃 𝑋 𝑐 .
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pdf and cdf for continuous RV
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“     ”



Finding Probabilities from CDF
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Definition: 
For any RV,











(amount of jump in the CDF @ )





For continuous RV,



Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

10.3 Expectation and Variance

24

Probability and Random Processes
ECS 315



Integration by Parts
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 A technique for simplifying integrals of the form

 Tabular integration by parts: A convenient method for 
organizing repeated application of integration by part:
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n
n

n
n

f x g x

f x G x

f x G x

f x G x

f x G x
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+ 

+ 
Differentiate  Integrate 

  

𝑓 𝑥
𝑑

𝑑𝑥
𝑓 𝑥

𝐺 𝑥 𝑔 𝑥 𝑑𝑥

𝐺 𝑥 𝐺 𝑥 𝑑𝑥𝑓 𝑥 𝑔 𝑥 𝑑𝑥 𝑓 𝑥 𝐺 𝑥 1 𝑓 𝑥 𝐺 𝑥 1 𝑓 𝑥 𝐺 𝑥 𝑑𝑥 𝐶

[A.15]



Integration by Parts
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Continuous RVDiscrete RV
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Johann Carl Friedrich Gauss
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 1777 –1855

 A German mathematician

German 10-Deutsche Mark Banknote (1993; discontinued)



Ex. Muscle Activity 
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 Look at electrical activity of skeletal muscle by recording a 
human electromyogram (EMG). 

[http://www.adinstruments.com/solutions/education/ltexp/electro
myography-emg-german]



Ex. Measuring the speed of light
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 100 measurements of the speed of light (1,000 
km/second), conducted by Albert Abraham Michelson in 
1879.



Expected Value and Variance

32

>> syms x
>> syms m real
>> syms sigma positive

>> int(1/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)
ans =
1
>> EX = int(x/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)
EX =
m
>> EX2 = int(x^2/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)^2/(2*sigma^2)),x,-inf,inf)
EX2 =
-(2^(1/2)*(limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) - m*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) -
(2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m^2 + sigma^2)*i)/2, x == -Inf) - limit(- x*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) -
x^2/(2*sigma^2)) - m*sigma^2*exp((x*m)/sigma^2 - m^2/(2*sigma^2) - x^2/(2*sigma^2)) - (2^(1/2)*pi^(1/2)*sigma*erfi((2^(1/2)*(x - m)*i)/(2*sigma))*(m^2 + 
sigma^2)*i)/2, x == Inf)))/(2*pi^(1/2)*sigma)

>> EX2 = simplify(EX2)
EX2 =
m^2 + sigma^2
>> VarX = EX2 - (EX)^2
VarX =
sigma^2

“Proof ” by MATLAB’s symbolic calculation



Gaussian Random Variable

33 [Wikipedia.org]

mmmmm m m m m



Gaussian Random Variable
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Standard scores 1

[Wikipedia.org]

mmmmm m m m m



Gaussian Random Variable
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10

[Wikipedia.org]
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SIIT Grading Scheme (Option 3)

36 [Wikipedia.org]

F     D   D+   C    C+   B   B+   A

7% 9% 15%19%19% 15% 9% 7%

Class GPA 2.25

mmmmm m m m m



From the News
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4 July 2012

They claimed that by combining two 
data sets, they had attained a confidence 
level just at the "five-sigma" point -
about a one-in-3.5 million chance
that the signal they see would appear if 
there were no Higgs particle.

However, a full combination of the CMS 
data brings that number just back to 4.9 
sigma - a one-in-two million chance.

Particle physics has an accepted 
definition for a discovery: a “five-
sigma” (or five standard-deviation) 
level of certainty
The number of sigmas measures 
how unlikely it is to get a 
certain experimental result as a 
matter of chance rather than 
due to a real effect
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Six Sigma
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Six Sigma
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 If you manufacture something that has a normal distribution and 
get an observation outside six  of , you have either seen 
something extremely unlikely or there is something wrong with 
your manufacturing process. You’d better look it over. 

 This approach is an example of statistical quality control, 
which has been used extensively and saved companies a lot of 
money in the last couple of decades.

 The term Six Sigma, a registered trademark of Motorola, has 
evolved to denote a methodology to monitor, control, and 
improve products and processes. 

 There are Six Sigma societies, institutes, and conferences. 
 Whatever Six Sigma has grown into, it all started with 

considerations regarding the normal distribution.

[Olofsson, 2006, p. 168]



Six Sigma

40 [Bass, 2007, p. 20]



Probabilities involving Gaussian RV
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 There is no closed-form simplification for 

.

 We have a table which gives the cdf of a standard Gaussian 
RV:

 when 
 The table gives for .
 Can use the property  

to work with 

(except for some special cases)



Probabilities involving Gaussian RV
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 There is no closed-form simplification for 𝑒 𝑑𝑥.

 We have a table which gives the cdf of a standard Gaussian RV:
𝛷 𝑧   𝐹 𝑧  when 𝑍 ∼  0,1 .

 The 𝛷 table gives 𝛷 𝑧 for 𝑧 ∈ 0,3 .
 The 𝑄 table gives 𝑄 𝑧 1 𝛷 𝑧 for 𝑧 ∈ 3,5 .
 Can use the property  𝛷 𝑧 1 𝛷 𝑧 to work with 𝑧 0

 For 𝑋 ∼  𝑚, 𝜎 ,

 𝑃 𝑋 𝑏 𝑃 𝑋 𝑏 𝐹 𝑏 𝛷

 𝑃 𝑋 𝑎 𝑃 𝑋 𝑎 1 𝐹 𝑎 1 𝛷
 𝑃 𝑎 𝑋 𝑏 𝑃 𝑎 𝑋 𝑏 𝑃 𝑎 𝑋 𝑏 𝑃 𝑎 𝑋 𝑏

𝐹 𝑏 𝐹 𝑎 𝛷 𝛷

(except for some special cases)



More on Gaussian RVs…
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Poisson Process
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Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

The number of arrivals N1, N2, N3,…during non-overlapping time intervals 
are independent Poisson random variables with mean =   the length of the 
corresponding interval.

The lengths of time between adjacent arrivals W1, W2, W3 ,… are i.i.d. 
exponential random variables with mean 1/.

W1 W2 W3 W4



More on Exponential RV …
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Review: Function of discrete RV
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