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Sections 10.1-10.2

Discrete RV

pmf: px(x) = P[X = x]
Two characterizing properties:
px(x) =0
Zx Px (x) =1

* Sy ={xipx(x) > 0}

e P[some statement(s) about X]

= 2 px (x)
{all the x values that
satisfy the statement(s)}

e cdf'is a staircase function with jumps whose
size at X = C gives P[X = C].
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Continuous RV

_ _ probability per unit length
P[IX=x]=0
pdf: Plxg < x < xo + Ax] = fx(x¢)Ax
Two characterizing properties:

fx(x) =0

So () dx =1
Sx = {x: fx(x) > 0}
P[some statement(s) about X] =

fx (x)dx

{all the xvalues that
satisfy the statement(s)}

cdfis a continuous function.




Chapter 9 vs. Section 10.3

Discrete RV Continuous RV

EX = lexpx (x) EX = Ojo xfy (X )dx

g(x) f, (x)dx

2[a(X)]-Za(p (¥ a[a(x)]

f =8| §e—38

x* f, (x)dx

E[Xz]:lexsz(x) E| X* ]

Var[X]=B| (X ~BX)’ | =B[ X" ]~ (BX )

Oy =\/Var[X]
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10.1 Probability Density Function




Ex. rand function

* Generate an array of uniformly
distributed pseudorandom numbers.
The pseudorandom values are drawn

from the standard uniform

distribution on the open interval
(0,1).

* rand returns a scalar.

e rand(m,n) or rand([m,n])

returns an m—by—n matrix.

rand(N) returns an n-by-n matrix

>» rand (10,

ang =

. TB535
. 7952
.1869
.1898
.3456
. 6463
. 7094
. 7547
2760
. 6797

e T e Y i Y e T i Y i O i N e N o O |

o T e Y Y I e Y e O R e Y e

.B8351
1626
.11390
. 41984
. 35597
. 3404
. 5853
2238
. T513
2551




Ex. Muscle Activity

® [ook at electrical activity of skeletal muscle by recording a

0.6

human electromyogram (EMG).
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[http://www.adinstruments.com/solutions/education/Itexp/electro
\ myography-emg-german]




Three Important Continuous RVs

close all; clear all;

N =1e6; b =20; m =1; s = 1;

R = [1-5*s,1+5*s];

% Uniform

X = (2*sqgrt(3)*(rand(1,N)-0.5))+1;
subplot(3,2,1); plot(X);
subplot(3,2,2); plotHistPdf(X,b)
xTim(R)

% Normal

X = randn(1,N)+1;
subplot(3,2,3); plot(X);
subplot(3,2,4); plotHistPdf(X,b)
xIim(R)

% Exponential

X = exprnd(1,1,N);
subplot(3,2,5); plot(X);
subplot(3,2,6); plotHistPdf(X,b)
xTim(R)




Three Important Continuous RVs
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Three Important Continuous RVs
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Three Important Continuous RVs

5000

10000

.

5000

10000

600

400

200

2000

1000

6000

4000

2000

Mean = 1
Std =1
N = 10,000




Review: P[some condition(s) on X]

For discrete random variable,
8.14. Steps to find probability of the form P [some condition(s) on X]|

when

the pmf px(z) is known.

(a) Find the support of X.

(b) Consider only the x inside the support. Find all values of x
that satisfy the condition(s).

(c) Evaluate the pmf at x found in the previous step.

(d) Add the pmf values from the previous step.

-

\_

P[some condition(s) on X] =

T

Discrete RV

Z px(x)

T— Sum over all the x values that
satisfy the condition(s)

J




P[some condition(s) on X]

e For discrete random variable,

/

-

—A—
P[some condition(s) on X] = Z px (x)

probability mass function (pmf)\

T

Discrete RV T— Sum over all the x values that
satisty the condition(s)

¢ For continuous random variable,

l pmf — pdf

/

-

P|some condition(s) on X]| j [v(x)dx

probablhty density function (pdf)\

Continuous T— Integrate over all the x values that
RV satisty the condition(s) -

(-,




Support of a RV

* In general, the support of a RV X is any set S such that
PlX € S] = 1.

® In this class, we try to find the smallest (minimal) set that

works as a support.

® For discrete random variable,
Sy = {x:px(x) > 0}
¢ For continuous random variable,

Sy = {x: fx(x) > 0}




anoge pue 000'0S

ki 00005 - 0
j 000'6Z - 0
000'04 -

000'8 -
000'9 -
000'y -
000'€ -
0062 -
0002 -
0SL'L -
006't -
0sZ't -

00

World Map of Population Density

000t -
008 -
009 -
00s -
oor -
00€ -
ooz -
oS -

00'sC
00'04
000'8
000'9
000'y
000'¢
00S'C
000
0SL'L
00S'L
0SZ'L
000}
008
009
00S
0oy
00€
00z
oSt
00l
1-0G

0S-SC
SZ-0l
0L-S

G-€
£€-1

1-S0
G'0 uey ss9y

WM 21enbs 1od suosiag

[http://i.imgur.com/gBYMfWO.jpg]




Thailand’s Population Density
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“Density”

® Density — quantity per unit of measure.

o Population Density = number of people per unit area

[Location with high density value means there are a lot of people

around that location.
Given a region, we integrate the density over that region to get
the number of people residing in that region.

® Probability Density = probability per unit “length”.
Given an interval, we integrate the density over that interval to
get the probability that the RV will be in that interval.




References

From Discrete to Continuous
Random Variables: [Y&G]

Sections 3.0 to 3.1

PDF and CDF: [Y&G]
Sections 3.1 to 3.2

Expectation and Variance:

[Y&(G] Section 3.3

Families of Continuous
Random Variables: [Y&G]

Sections 3.4 to 3.5

Course Outline

The following is a tentative list of topics with their corresponding chapters from the textk
Yates and Goodman. Each topic spans approximately one week.

1. Introduction, Set Theory, Classical Probability [1]

2. Combinatorics: Four Principles and Four Kinds of Counting Problems  [1]

3. Probability Foundations [1]

4,  Event-based Conditional Probability [1]

5.  Event-based Independence [1]

6. Random variables, Support, Probability Distribution [2]

7. MIDTERM: 3 Oct 2019 TIME 15:00 - 17:00

8. Discrete Random Variables [2]

9.  Families of Discrete Random Variables and Introduction to Poisson [2,10]

Processes

10. Real-Valued Functions of a Random Variable [2]
11. Expectation, Moment, Variance, Standard Deviation [2]
12. Continuous Random Variables [3]
13. Families of Continuous Random Variables and Introduction to [3,10]

Poisson Processes

e Exercise 17 Solution [Posted @ 5PM on C

e References: [Y&G] Chapter 2

e Notes from the tutorial session [Posted @ 11:3

e Part |V: Continuous Random Variables

e Chapter 10: Continuous Random Variables [Po:

e References
e From Discrete to Continuous Rand
e PDF and CDF: [Y&G] Sections 3.1 t«¢
e Expectation and Variance: [Y&G] Se

e Families of Continuous Random Va
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10.2 Properties of PDF and CDF




Sections 10.1-10.2

Discrete RV

pmf: px(x) = P[X = x]
Two characterizing properties:
px(x) =0
Zx Px (x) =1

* Sy ={xipx(x) > 0}

e P[some condition(s) on X]

= 2 px (x)
{all the x values that
satisfy the condition(s)}

e cdf'is a staircase function with jumps whose
size at X = C gives P[X = C].

A
Fy (x )
] —— —
1/2F---- y  m®
- e
1 2 3 4

Continuous RV

P [X — x] — O probability per unit length
pdf: Plxg < x < xo + Ax] = fx(x¢)Ax
Two characterizing properties:
fx(x) =0
[ () dx =1
Sx = {x: fx(x) > 0}
P[some condition(s) on X| =

fx (x)dx
{all the xvalues that
satisfy the condition(s)}

cdfis a continuous function.




pdf and cdf for continuous RV

i ] Fx(b) — Fx(a)
a< X <b| < Fy(x) = P|X < x]

a < X < b]
a <X < D]
a <X < b]
a < X < D]

T U U U T




Finding Probabilities from CDF

Definition: Fy (x)=P|[X < x_

P[X = a] = 1-F/(a) +P|X =q]

For any RV, For continuous RV,

« P[X < b] = Fy(b) - P[X < b] = Fy(b)
P|X < b] = Fx(b) — P[X = b] P|X < b] = Fx(b)

e PIX >a] =1- Fx(a) o P[X >a]l =1-Fy(a)

P[X >a] =1 — Fy(a)

(-,

(amount of jump in the CDF (@ a)

° Pla <X < b] =Fx(b) —Fx(a) |» Pla <X < b] = Fx(b) — Fx(a)
Pla < X < b] = Fy(b) — Fx(a)
Pla < X < b] = Fy(b) — Fx(a)
Pla < X < b] = Fyx(b) — Fx(a)
°* PIX=a| =Fx(a)—Fx(a™) |e P[X=a]=0

>/
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/[A.15]

Integration by Parts

o A technique for simplifying integrals of the form

j () g(x) d

e Tabular integration by parts: A convenient method for

organizing repeated application of integration by part:

/ f(x)

<

\_

i (1) (X) \ 1
Differentiate f (2) (X) \‘ Gz
f (n_l) (X) i

&Gn_l (X)

J‘f(n)(x) (=) >G,

~

Integrate

/

n—-1
[F0960 dx = @660 + Y (D FOWGi @) + 1" [ FP GG + €
i=1

) dt
FOC) = 200
Gy (x) = f 900 dx

Giaa(x) = f G:(x) de




(-,

Integration by Parts

sze“dx = (l x> —zx + ije” +C
3 9 27

=357 - Juege’ds

J.(sin X)exdx
=(sinx —cosx)e* — j(sin x)e dx
= %(sin X —cosX)e* +(




Chapter 9 vs. Section 10.3

Discrete RV Continuous RV

EX = lexpx (x) EX = Ojo xfy (X )dx

g(x) f, (x)dx

2[a(X)]-Za(p (¥ a[a(x)]

f =8 |§e—38

x> f, (x)dx

E[Xz]:lexsz(x) E[ X* |

Var[X]=B| (X ~BX)’ | =B[ X" ]~ (BX )

Oy =\/Var[X]
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10.4 Families of Continuous Random
Variables




\

Johann Carl Friedrich Gauss

GU5672972S2

ZEHN DEUTSCHE MARK \

German 10-Deutsche Mark Banknote (1993; discontinued)

e 1777 —1855

® A German mathematician




Ex. Muscle Activity

® [ook at electrical activity of skeletal muscle by recording a

human electromyogram (EMG). *

‘W il

—"_F_-

-
m
[http:/ /www.adinstruments.com/solutions/education/Itexp/electro
\ myography-emg-german]




Ex. Measuring the speed of light

® 100 measurements of the speed of light (x1,000
km/second), conducted by Albert Abraham Michelson in

1879.

I_If_':

P

299.60

299 85

300.15




Expected Value and Variance

“Proof” by MATLAB’s symbolic calculation

>> syms X
>> syms m real
>> syms sigma positive

>> Int(1/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)"2/(2*sigma~2)) , X, —Inf, 1nf)

ans =

1

>> EX = 1Int(X/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)"2/(2*sigma~2)) ,X,—1In¥F, 1nT)
EX =

m

>> EX2 = 1Int(XN2/(sqrt(sym(2)*pi)*sigma)*exp(-(x-m)"2/(2*sigma~2)) ,X,—-1nF, 1nf)
EX2 =

-@r@A/2)*(imit(- x*sigma™2*exp((x*m)/sigma”2 - m"2/(2*sigman2) - x"2/(2*sigman2)) - m*sigma™2*exp((x*m)/sigma”2 - m"2/(2*sigman2) - x"2/(2*sigman2)) -

@ (172)*pinr(1/72)*sigma*erfi ((2N(172)*(x - m)*i)/(2*sigma))*(m 2 + sigman2)*i)/2, x == -Inf) - limit(- x*sigma™2*exp((x*m)/sigman2 - m 2/ (2*sigmar2) -
x"2/(2*sigman2)) - m*sigma™2*exp((x*m)/sigman2 - m"2/(2*sigman2) - x"2/(2*sigman2)) - @N(A/2)*pinr(L/2)*sigmarerfi (2N (A/2)*(x - m)*i)/(2*sigma))*(m™2 +
sigman2)*i)/2, x == Inf)))/(2*pi~(1/2)*sigma)

>> EX2 = simplifty(EX2)
EX2 =

mN2 + sigma™2

>> VarX = EX2 - (EX)"2
VarxX =

sigman2

(-,




Gaussian Random Variable

Normal,
Bell-shaped Curve

|
I
Percentage of :
cases in 8 portions 13%

of the curve

2.14% 13.59%| 34.13% | 34.13% |13.59%

Standard DeviationgM-40 m-3o m-20 m-1io m m+io m+2g m+3o0 m+40

[Wikipedia.org]
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Gaussian Random Variable

Normal,
Bell-shaped Curve

I
I
Percentage of :

cases in 8 portions 13% 2.14% 13.59%| 34.13% | 34.13% |13.59%
of the curve
Standard DeviationgM-4o m-3o m-20 m-1io m m+io m+2g m+3o0 m+4g
Cumulative ' ' ' ' ' ' '
Percentages 0.1|% 2i3% ‘ISI.Q% 50:}’0 84i1% 97.17% 991.9%
| | 1 1T 1. T [ T 1T 1171 1 | |
Percentiles 1 5 10 20 3040 50 60 70 80 90 95 99
Standard scores | Z scores| 4.0 -3:.0 -2:.0 -1:.0 (j; 1 +1.0 +2:.0 +3:.0 +4.0
T scores 2:0 3:0 c:w 5:0 5:0 ?c:) 8:0
Standard Nine 1 2 3| 4 5 6 7 | 8 9
(Stanines)
Percentage 4% 7% | 12% | 17% | 20% | 17% | 12% | 7% 4%
in Stanine
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Gaussian Random Variable

Normal,
Bell-shaped Curve

I
I
Percentage of :

cases in 8 portions 13% 2.14% 13.59%| 34.13% | 34.13% |13.59%
of the curve
Standard DeviationgM-4o m-3o m-20 m-1io m m+io m+2g m+3o0 m+4g
Cumulative ' ' ' ' ' ' '
Percentages 0.1I % 2.I 3% 15|.9% 50:}6 84i 1% 97.17% 991.9%
| | 1 11 1T | 1 1T 11T 1 [ |
Percentiles 1 5 10 20 3040 50 60 70 80 90 95 99
Z scores -4.0 -3:.0 -2:.0 -1:.0 6 +1'.0 +2:.0 +3:.0 +4.0
T scores 2:0 3:0 4:10 @ 10 e0 ?c:) E!:D
Standard Nine 1 2 3| 4 5 6 7 | 8 9
(Stanines)
Percentage 4% 7% | 12% | 17% | 20% | 17% | 12% | 7% 4%
in Stanine




SIHIT Grading Scheme (Option 3)

Normal,
Bell-shaped Curve

Class GPA 2.25

I |
50/4190/%19%'150

Percentage of

cases in 8 portions . 3413% | 34.13%
of the curve : D D'|JI Cl C ; B
Standard DeviationgM-4o m-3o m-20 m-‘ic m m+1io m+2o m+3o m+4o
Cumulative ' ' ' ' ' ' '
Percentages 0.1I % 2.I 3% ‘ISI.Q% 50:36 84i 1% 97.17% 991.9%
| 1 1 rr 111 T 1111 1 [ [
Percentiles 1 5 10 20 3040 50 60 70 80 90 95 99
Z scores -4.0 -3:.0 -2:.0 -1:.0 (:) +1:0 +2:.0 +3:.0 +4.0
T scores 2:0 3:0 c:w 5:0 5:0 ?c:) 8:0
Standard Nine 1 2 3| 4 5 6 7 | 8 9
(Stanines)
Percentage 4% 7% | 12% [ 17% | 20% | 17% | 12% | 7% 4%
in Stanine




claimed at LHC

A COMMENTS (1655
By Paul Rincon

Science editor, BBC News website, Geneva

From the News

4 July 2012

Particle physics has an accepted
definition for a discovery - a “five-
sigma” (or five standard-deviation)

level of certainty

nggS boson-like pﬂrtiCIE diSCOVEI'y The number of sigmas measures

how unlikely it is to get a
certain experimental result as a
matter of chance rather than
due to a real effect

They claimed that by combining two
data sets, they had attained a confidence
level just at the "five-sigma" point -
about a one-in-3.5 million chance
that the signal they see would appear if

there were no Higgs particle.

However, a full combination of the CMS
data brings that number just back to 4.9

Sigma - a one-in-two million chance.




Six Sigma

95.44%

99.73%

A3

60 <50 -d4o -30 -20

99.999943%

99.9999998%

99.9937%

oo
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-l 0 +lo 420 430 +40 450 +bo




Six Sigma

If you manufacture something that has a normal distribution and
get an observation outside six G of UL, you have either seen
something extremely unlikely or there is something wrong with
your manufacturing process. You'd better look it over.

This approach is an example of statistical quality control,
which has been used extensively and saved companies a lot of
money in the last couple of decades.

The term Six Sigma, a registered trademark of Motorola, has
evolved to denote a methodology to monitor, control, and
improve products and processes.

There are Six Sigma societies, institutes, and conferences.

Whatever Six Sigma has grown into, it all started with
considerations regarding the normal distribution.

[Olofsson, 2006, p. 168]
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Six Sigma

fv—/rﬂ/r/
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) 68 .26%.

95.44%

\

[
L

99.73%

N

\f\M

oo
>

60 =50 -4o0 -30 -20 -lo 0 +lo 420 430 +40 +50 460

|_-

I

F 3

99.9937%

99.999943%

99.9999998%

rI

v

Range Percentage of products Percentage of
around in conformance nonconforming products
—1o to +1o 68.26 31.74
—20 to +20 95.46 4.54
—30 to +30 99.73 0.27
—40 to +4o 99.9937 0.0063
—50 to +bo 99.999943 0.000057
—60 to +60 99.9999998 0.00000002

[Bass, 2007, p. 20]
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Probabilities involving Gaussian RV

® There is no closed-form simplification for

rb
1 _l(ﬂ)z
e 2\ o dx . (except for some special cases)
2o
Ja
® We have a table which gives the cdf of a standard Gaussian
RV:

®(z)=F,(z) when Z ~ N(0,1).
The @ table gives d(z) for z € [0,3).

Can use the property
b(—z)=1—-D(2)
to work with z < 0

(-




Probabilities involving Gaussian RV

(except for some special cases)

b
1 _l(ﬂ)z
e There is no closed-form simplification for e 2\ o / dx.
\V2TTO
a

® We have a table which gives the cdf of a standard Gaussian RV:
®(z)=F,(z) when Z ~ N(0,1).
The @ table gives ®(z) for z € [0,3).
The @ table gives Q(z) =1—®(z2) for z € [3,5).
Can use the property b(—z)=1—P(2) to work withz < 0

o For X ~ N(m, c2),
P[X < b] = P[X < b] = Fx(b) = & (=)

o

PjX>a]=P[Xza]=1—FX(a)=1—cp(“‘m)

o
Pla<X<b]=Pla<X<b]=Pla<X<b]=Pla<X<bh]
b—m

= Fy(b) — Fy(a) = & (T) Sy (“‘m)

o




More on Gaussian RVs...

STATISTICS: textbooks &

HANDBOOK OF
THE NORMAL
DISTRIBUTION

Second Edition, Revised and Expanded

JAGDISH K. PATEL
CAMPBELL B. READ

Probability
| Distributions
/ Involving Gaussian
’ Random Variables

A Handbook for Engineers,
Scientists and Mathematicians

‘3 Springer




Poisson Process

The number of arrivals N, N,, N;,...during non-overlapping time intervals

are independent Poisson random variables with mean = A X the length of the

corresponding interval.

T, T, T,

N, =1 N, =2
Fe—H—HKk %* > Time
<€ >E—>€C—>€

W, W, W, W,

The lengths of time between adjacent arrivals W, W,, W, ... arei.i.d.

exponential random variables with mean 1/A.




More on Exponential RV ...

Mohammad Ahsanullah Handhook

G.G. Hamedani : of
Exponential and Related
Distritunrs vy
Engineers
and
Scientists

“Exponential®
Distribution
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Course Outline

The following is a tentative list of topics with their corresponding chapters from the textt
Yates and Goodman. Each topic spans approximately one week.

1. Introduction, Set Theory, Classical Probability [1]
2. Combinatorics: Four Principles and Four Kinds of Counting Problems  [1]
3.  Probability Foundations [1]
4.  Event-based Conditional Probability [1]
5. Event-based Independence [1]
6. Random variables, Support, Probability Distribution [2]
7. MIDTERM: 4 Oct 2018 TIME 09:00 - 11:00

8. Discrete Random Variables [2]
9.  Families of Discrete Random Variables and Introduction to Poisson [2,10]

Processes

10. Real-Valued Functions of a Random Variable [2]
11. Expectation, Moment, Variance, Standard Deviation [2]
12. Continuous Random Variables [3]

13. Families of Continuous Random Variables and Introduction to
Poisson Processes

[3,10]

e Excercise 15 Solution [Posted @ 4:30PM on !

e Excercise 16 Solution [Posted @ 3PM on Nov

e Slides [Posted @ 4:30PM on Nov 6]

e Part IV: Continuous Random Variables

e Chapter 10 [Posted @ 10AM on Nov 5]

e Annotated notes for Sections 10.1-10.3 [Pos

¢ References
* From Discrete to Continuous Random '
e PDF and CDF: [Y&G] Sections 3.1 to 3..
e Expectation and Variance: [Y&G] Sectio
® Families of Continuous Random Variak

e Part V: Multiple Random Variables
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Review: Function of discrete RV

Example 9.16. Let

@ r =41 £2
rx (r) = { otherwise IEX =0

and
Y = X"
Find py(y) and then calculate EY .= ~ » Py 2
4 -
Step 12 Fiad ¢ step 2: Find pyty) Ve YR
ZP,LAJ =1 Y o ohermise
)
L% 2" l"rj'l* L-l}l) = 4 P 4
¢ 1/10 1 1= Ex=3 ()
C =10, /10 -1 (-1)"=1 ,v/F‘T 7
“io 2t T
4o -2 L)'=l 5 s
= L—.? =13
bred stleederxasd s Yz Vs

P(Y =1] =p¢* =)+ P[x=-2] = %u =4/
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® From Discrete to Continuous Random Variables: [Y&G]

Sections 3.0 to 3.1
® PDF and CDF: [Y&G] Sections 3.1 to 3.2
* Expectation and Variance: [Y&G] Section 3.3

® Families of Continuous Random Variables: [Y&G] Sections

3.4 to 3.5
e SISO: [Y&G] Section 3.7; [Z&T] Section 5.2.5




