Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th
10 Continuous Random Variables

Office Hours:

Check Google Calendar on the course website.
Dr.Prapun's Office:
6th floor of Sirindhralai building, BKD

Sections 10.1-10.2

Discrete RV

- pmf: $\boldsymbol{p}_{X}(x) \equiv P[X=x]$
- Two characterizing properties:
- $p_{X}(x) \geq 0$
- $\sum_{x} p_{X}(x)=1$
- $S_{X}=\left\{x: p_{X}(x)>0\right\}$
- $P[$ some statement(s) about $X]$

$$
=\sum_{\substack{\{\text { all the } x \text { values that } \\ \text { satisfy the statement }(\mathrm{s})\}}} p_{X}(x)
$$

- cdf is a staircase function with jumps whose size at $x=c$ gives $P[X=c]$.

Continuous RV

- $P[X=x]=0$
probability per unit length
- pdf: $P\left[x_{0} \leq x \leq x_{0}+\Delta x\right] \approx f_{X}\left(x_{0}\right) \Delta x$
- Two characterizing properties:
- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $S_{X}=\left\{x: f_{X}(x)>0\right\}$
- $P[$ some statement(s) about $X]=$

$$
\int_{\substack{\{\text { all the } x \text { values that } \\ \text { satisfy the statement(s) }\}}} f_{X}(x) d x
$$

- cdf is a continuous function.

Chapter 9 vs. Section 10.3

Discrete RV

Continuous RV

$\mathbb{E} X=\sum_{x} x p_{X}(x)$	$\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x$
$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
$\mathbb{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)$	$\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x$

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} \\
\sigma_{X} & =\sqrt{\operatorname{Var}[X]}
\end{aligned}
$$

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

T
10.1 Probability Density Function

Ex. rand function

- Generate an array of uniformly distributed pseudorandom numbers.
- The pseudorandom values are drawn from the standard uniform distribution on the open interval $(0,1)$.
- rand returns a scalar.
- $\operatorname{rand}(m, n)$ or $r a n d([m, n])$ returns an m-by- n matrix.
- rand (n) returns an n-by-n matrix

```
>> rand
ans =
    0.3816
>> rand (10,2)
ans =
0.7655 0.6551
0.7952 0.1626
0.1869 0.1190
0.4898 0.4984
0.4456 0.9597
0.6463 0.3404
0.7094 0.5853
0.7547 0.2238
0.2760 0.7513
0.6797 0.2551
```


Ex. Muscle Activity

- Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

[http://www.adinstruments.com/solutions/education/ltexp/electro

Three Important Continuous RVs

```
close all; clear all;
N = 1e6; b = 20; m = 1; s = 1;
R = [1-5*s,1+5*s];
% Uniform
X = (2*sqrt(3)*(rand(1,N)-0.5))+1;
subplot(3,2,1); plot(X);
subplot(3,2,2); plotHistPdf(X,b)
xlim(R)
% Normal
X = randn(1,N)+1;
subplot(3,2,3); plot(X);
subplot(3,2,4); plotHistPdf(X,b)
xlim(R)
% Exponential
X = exprnd(1,1,N);
subplot(3,2,5); plot(X);
subplot(3,2,6); plotHistPdf(X,b)
xlim(R)
```


Three Important Continuous RVs

Mean $=1$
Std $=1$
$\mathrm{N}=100$

Three Important Continuous RVs

Mean $=1$
Std $=1$
$\mathrm{N}=1,000$

Three Important Continuous RVs

Review: P [some condition(s) on $X]$

For discrete random variable,

8.14. Steps to find probability of the form P [some condition(s) on X] when the pmf $p_{X}(x)$ is known.
(a) Find the support of X.
(b) Consider only the x inside the support. Find all values of x that satisfy the condition(s).
(c) Evaluate the pmf at x found in the previous step.
(d) Add the pmf values from the previous step.

$$
P[\text { some condition(s) on } X]=\sum_{\text {Discrete RV }}^{\square} p_{X}(x)
$$

$P[$ some condition(s) on $X]$

- For discrete random variable,

$$
\left.\begin{array}{l}
P[\text { some condition(s) on } X \underset{\uparrow}{X}]=\sum_{\text {Discrete RV }} \overbrace{p_{X X}(\boldsymbol{x})}^{\text {probability mass function (pmf) }} \\
\underbrace{\text { Sum over all the } x \text { values that }}_{\text {satisfy the condition(s) }}
\end{array}\right)
$$

- For continuous random variable,

$$
\sum^{\mathrm{pmf} \rightarrow \mathrm{pdf}} \rightarrow \int^{2}
$$

$$
\begin{aligned}
& P[\text { some condition(s) on } X]=\int \overbrace{f_{X}(x)}^{\text {probabil }} d x \\
& \text { satisfy the condition(s) }
\end{aligned}
$$

Support of a RV

- In general, the support of a RV X is any set S such that $P[X \in S]=1$.
- In this class, we try to find the smallest (minimal) set that works as a support.
- For discrete random variable,

$$
S_{X}=\left\{x: p_{X}(x)>0\right\}
$$

- For continuous random variable,

$$
S_{X}=\left\{x: f_{X}(x)>0\right\}
$$

World Map of Population Density

Thailand's Population Density

High

Low
https: / /www.researchgate.net/pu
blication/260378246 Climate-
Related Hazards A Method for
Global Assessment of Urban an
d Rural Population Exposure to
Cyclones Droughts and Floods

World Map of Population Density

World Map of Population Density

"Density"

- Density = quantity per unit of measure.
- Population Density $=$ number of people per unit area
- Location with high density value means there are a lot of people around that location.
- Given a region, we integrate the density over that region to get the number of people residing in that region.
- Probability Density = probability per unit "length".
- Given an interval, we integrate the density over that interval to get the probability that the RV will be in that interval.

References

- From Discrete to Continuous

Random Variables: [Y\&G]
Sections 3.0 to 3.1

- PDF and CDF: [Y\&G]

Sections 3.1 to 3.2

- Expectation and Variance:
[Y\&G] Section 3.3
- Families of Continuous

Random Variables: [Y\&G]
Sections 3.4 to 3.5

Course Outline

The following is a tentative list of topics with their corresponding chapters from the textk Yates and Goodman. Each topic spans approximately one week.
$\begin{array}{ll}\text { 1. Introduction, Set Theory, Classical Probability } & \text { [1] }\end{array}$
2. Combinatorics: Four Principles and Four Kinds of Counting Problems [1]
3. Probability Foundations [1]
4. Event-based Conditional Probability [1]
5. Event-based Independence [1]
6. Random variables, Support, Probability Distribution [2]
7. MIDTERM: 3 Oct 2019 TIME 15:00-17:00
$\begin{array}{lll}\text { 8. } & \text { Discrete Random Variables } & {[2]} \\ \text { 9. } & \text { Families of Discrete Random Variables and Introduction to Poisson } & {[2,10}\end{array}$ Processes
10. Real-Valued Functions of a Random Variable [2]
11. Expectation, Moment, Variance, Standard Deviation [2]
12. Continuous Random Variables
13. Families of Continuous Random Variables and Introduction to $[3,10]$ Poisson Processes

- Exercise 17 Solution [Posted @ 5PM on C
- References: [Y\&G] Chapter 2
- Notes from the tutorial session [Posted @ 11:3
- Part IV: Continuous Random Variables
- Chapter 10: Continuous Random Variables [Pos
-
- References
- From Discrete to Continuous Rand
- PDF and CDF: [Y\&G] Sections 3.1 tc
- Expectation and Variance: [Y\&G] S C
- Families of Continuous Random Va

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
10.2 Properties of PDF and CDF

Sections 10.1-10.2

Discrete RV

- pmf: $\boldsymbol{p}_{X}(x) \equiv P[X=x]$
- Two characterizing properties:
- $p_{X}(x) \geq 0$
- $\sum_{x} p_{X}(x)=1$
- $S_{X}=\left\{x: p_{X}(x)>0\right\}$
- $P[$ some condition(s) on $X]$

$$
=\sum_{\substack{\{\text { all the } x \text { values that } \\ \text { satisfy the condition(s) }\}}} p_{X}(x)
$$

- cdf is a staircase function with jumps whose size at $x=c$ gives $P[X=c]$.

Continuous RV

- $P[X=x]=0$
probability per unit length
- pdf: $P\left[x_{0} \leq x \leq x_{0}+\Delta x\right] \approx f_{X}\left(x_{0}\right) \Delta x$
- Two characterizing properties:
- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$
- $S_{X}=\left\{x: f_{X}(x)>0\right\}$
- $\quad P[$ some condition(s) on $X]=$
 satisfy the condition(s)\}
- cdf is a continuous function.

pdf and cdf for continuous RV

$$
\begin{array}{lc}
P[a<X<b] \\
P[a<X<b] \\
P[a \leq X<b] \\
P[a<X \leq b] \\
P[a \leq X \leq b]
\end{array} \quad \frac{F_{X}(b)-F_{X}(a)}{} F_{X}(x) \equiv P[X \leq x]
$$

Finding Probabilities from CDF

Definition: $F_{X}(x) \equiv P[X \leq x]$

For any RV,	For continuous RV,
$P[X \leq b]=F_{X}(b)$	$\bullet P[X \leq b]=F_{X}(b)$
$P[X<b]=F_{X}(b)-P[X=b]$	$P[X<b]=F_{X}(b)$
$\bullet P[X>a]=1-F_{X}(a)$	$P[X>a]=1-F_{X}(a)$
$P[X \geq a]=1-F_{X}(a)+P[X=a]$	$P[X \geq a]=1-F_{X}(a)$
$\cdot P[a<X \leq b]=F_{X}(b)-F_{X}(a)$	$\bullet P[a<X \leq b]=F_{X}(b)-F_{X}(a)$
	$P[a<X<b]=F_{X}(b)-F_{X}(a)$
	$P[a \leq X<b]=F_{X}(b)-F_{X}(a)$
	$P[a \leq X \leq b]=F_{X}(b)-F_{X}(a)$
$P[X=a]=F_{X}(a)-F_{X}\left(a^{-}\right)$	$\bullet P[X=a]=0$
(amount of jump in the CDF @a)	

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
10.3 Expectation and Variance

Integration by Parts

- A technique for simplifying integrals of the form

$$
\int f(x) g(x) d x
$$

- Tabular integration by parts: A convenient method for organizing repeated application of integration by part:

$$
\text { Differentiate } f^{f(1)} \boldsymbol{f}
$$

Integration by Parts

$$
\begin{array}{rlr}
\int x^{2} e^{3 x} d x & =\left(\frac{1}{3} x^{2}-\frac{2}{9} x+\frac{2}{27}\right) e^{3 x}+C & x^{2} \not e^{3 x} \\
& =x^{2}\left(\frac{1}{3} e^{3 x}\right)-\int 2 x \frac{1}{3} e^{3 x} d x & \frac{12 x-\frac{1}{3} e^{3 x}}{2} \frac{1}{9} e^{3 x} \\
& 10 \xrightarrow{27} e^{3 x}
\end{array}
$$

$\int(\sin x) e^{x} d x$
$=(\sin x-\cos x) e^{x}-\int(\sin x) e^{x} d x$
$=\frac{1}{2}(\sin x-\cos x) e^{x}+C$

Chapter 9 vs. Section 10.3

Discrete RV

Continuous RV

$\mathbb{E} X=\sum_{x} x p_{X}(x)$	$\mathbb{E} X=\int_{-\infty}^{\infty} x f_{X}(x) d x$
$\mathbb{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$	$\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x$
$\mathbb{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)$	$\mathbb{E}\left[X^{2}\right]=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x$

$$
\begin{aligned}
\operatorname{Var}[X] & =\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2} \\
\sigma_{X} & =\sqrt{\operatorname{Var}[X]}
\end{aligned}
$$

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th
10.4 Families of Continuous Random Variables

Johann Carl Friedrich Gauss

German 10-Deutsche Mark Banknote (1993; discontinued)

- 1777-1855
- A German mathematician

Ex. Muscle Activity

- Look at electrical activity of skeletal muscle by recording a human electromyogram (EMG).

[http://www.adinstruments.com/solutions/education/ltexp/electro

Ex. Measuring the speed of light

- 100 measurements of the speed of light $(\times 1,000$ $\mathrm{km} /$ second), conducted by Albert Abraham Michelson in 1879.

Expected Value and Variance

"Proof" by MATLAB's symbolic calculation

```
>> syms x
```

>> syms m real
>> syms sigma positive
\gg int(1/(sqrt(sym(2)*pi)*sigma)*exp $\left(-(x-m) \wedge 2 /\left(2^{*} \operatorname{sigma\wedge } 2\right)\right)$, x, -inf,inf)
ans =
1
>> EX $=\operatorname{int}\left(X /\left(\operatorname{sqrt}(\operatorname{sym}(2) * p i)^{*} \operatorname{sigma}\right)^{*} \exp \left(-(x-m) \wedge 2 /\left(2^{*}\right.\right.\right.$ sigma^2)), X,-inf,inf)
EX =
m

EX2 =

sigma^2)*i)/2, $x==\operatorname{Inf})) /\left(2^{*} \operatorname{pi}^{\wedge}(1 / 2) *\right.$ sigma)
>> EX2 = simplify(EX2)
EX2 =
m^2 + sigma^2
>> $\operatorname{Var} X=E X 2-(E X)^{\wedge} 2$
VarX =
sigma^2

Gaussian Random Variable

Gaussian Random Variable

Gaussian Random Variable

SIIT Grading Scheme (Option 3)

 in Stanine

From the News

Higgs boson-like particle discovery claimed at LHC

目 COMMENTS (1665)
By Paul Rincon
Science editor, BBC News website, Geneva

Particle physics has an accepted definition for a discovery: a "fivesigma" (or five standard-deviation) level of certainty
The number of sigmas measures how unlikely it is to get a certain experimental result as a matter of chance rather than due to a real effect

$$
\begin{aligned}
& \frac{1}{1-\Phi(5)} \approx 3.5 \times 10^{6} \\
& \frac{1}{1-\Phi(4.9)} \approx 2 \times 10^{6}
\end{aligned}
$$

37
They claimed that by combining two data sets, they had attained a confidence level just at the "five-sigma" point about a one-in- 3.5 million chance that the signal they see would appear if there were no Higgs particle.
However, a full combination of the CMS data brings that number just back to 4.9 sigma - a one-in-two million chance.

Six Sigma

Six Sigma

- If you manufacture something that has a normal distribution and get an observation outside six σ of μ, you have either seen something extremely unlikely or there is something wrong with your manufacturing process. You'd better look it over.
- This approach is an example of statistical quality control, which has been used extensively and saved companies a lot of money in the last couple of decades.
- The term Six Sigma, a registered trademark of Motorola, has evolved to denote a methodology to monitor, control, and improve products and processes.
- There are Six Sigma societies, institutes, and conferences.
- Whatever Six Sigma has grown into, it all started with considerations regarding the normal distribution.

Six Sigma

Range around μ	Percentage of products in conformance	Percentage of nonconforming products
-1σ to $+1 \sigma$	68.26	31.74
-2σ to $+2 \sigma$	95.46	4.54
-3σ to $+3 \sigma$	99.73	0.27
-4σ to $+4 \sigma$	99.9937	0.0063
-5σ to $+5 \sigma$	99.999943	0.000057
-6σ to $+6 \sigma$	99.9999998	0.00000002

Probabilities involving Gaussian RV

- There is no closed-form simplification for

$$
\int_{a}^{b} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}} d x . \quad \text { (except for some special cases) }
$$

- We have a table which gives the cdf of a standard Gaussian RV:

$$
\Phi(z) \equiv F_{Z}(z) \text { when } Z \sim \mathcal{N}(0,1)
$$

- The Φ table gives $\Phi(z)$ for $Z \in[0,3)$.
- Can use the property

$$
\Phi(-z)=1-\Phi(z)
$$

to work with $z<0$

Probabilities involving Gaussian RV

- We have a table which gives the cdf of a standard Gaussian RV:

$$
\Phi(z) \equiv F_{Z}(z) \text { when } Z \sim \mathcal{N}(0,1)
$$

- The Φ table gives $\Phi(z)$ for $z \in[0,3)$.
- The Q table gives $Q(z)=1-\Phi(z)$ for $z \in[3,5)$.
- Can use the property $\Phi(-z)=1-\Phi(z)$ to work with $z<0$
- For $X \sim \mathcal{N}\left(m, \sigma^{2}\right)$,
- $P[X \leq b]=P[X<b]=F_{X}(b)=\Phi\left(\frac{b-m}{\sigma}\right)$
- $P[X>a]=P[X \geq a]=1-F_{X}(a)=1-\Phi\left(\frac{a-m}{\sigma}\right)$
- $P[a<X \leq b]=P[a<X<b]=P[a \leq X<b]=P[a \leq X \leq b]$
$=F_{X}(b)-F_{X}(a)=\Phi\left(\frac{b-m}{\sigma}\right)-\Phi\left(\frac{a-m}{\sigma}\right)$

More on Gaussian RVs...

Poisson Process

The number of arrivals $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \ldots$ during non-overlapping time intervals are independent Poisson random variables with mean $=\lambda \times$ the length of the corresponding interval.

The lengths of time between adjacent arrivals $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}, \ldots$ are i.i.d. exponential random variables with mean $1 / \lambda$.

More on Exponential RV ...

References

- From Discrete to Continuous

Random Variables: [Y\&G]
Sections 3.0 to 3.1

- PDF and CDF: [Y\&G]

Sections 3.1 to 3.2

- Expectation and Variance:
[Y\&G] Section 3.3
- Families of Continuous

Random Variables: [Y\&G]
Sections 3.4 to 3.5

Course Outline

The following is a tentative list of topics with their corresponding chapters from the textk Yates and Goodman. Each topic spans approximately one week.

1. Introduction, Set Theory, Classical Probability
2. Combinatorics: Four Principles and Four Kinds of Counting Problems Probability Foundations
3. Probability Foundations
4. Event-based Independence [1]
5. Random variables, Support, Probability Distribution [2]
6. MIDTERM: 4 Oct 2018 TIME 09:00-11:00
7. Discrete Random Variables
8. Families of Discrete Random Variables and Introduction to Poisson [2,10] Processes
9. Real-Valued Functions of a Random Variable
10. Expectation, Moment, Variance, Standard Deviation [2]
11. Continuous Random Variables
12. Families of Continuous Random Variables and Introduction to $[3,10]$ Poisson Processes

- Excercise 15 Solution [Posted @ 4:30PM on I
- Excercise 16 Solution [Posted @ 3PM on Nov
- Slides [Posted @ 4:30PM on Nov 6]
- Part IV: Continuous Random Variables
- Chapter 10 [Posted @ 10AM on Nov 5]
- Annotated notes for Sections 10.1-10.3 [Pos
- References
- From Discrete to Continuous Random
- PDF and CDF: [Y\&G] Sections 3.1 to 3.2
- Expectation and Variance: [Y\&G] Sectio
- Families of Continuous Random Variab

Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th 10.5

Review: Function of discrete RV

Example 9.16. Let

$$
p_{X}(x)=\left\{\begin{array}{l}
\frac{1}{10 x^{2}}, \begin{array}{l}
x= \pm 1, \pm 2 \\
\text { otherwise }
\end{array} \\
\frac{\text { E } X}{}=\mathbf{0} 0
\end{array}\right.
$$

and

$$
Y=X^{4} .
$$

Find $p_{Y}(y)$ and then calculate $\mathbb{E} Y .=\sum_{y} y p_{Y}(y)$

$$
\begin{aligned}
& \text { Step 1: Find } c \\
& \sum_{x} p_{x}(x)=1 \\
& \frac{1}{c}\left(1^{2}+2^{2}+(-1)^{2}+(-2)^{2}\right)=1 \\
& c=10 . \quad \begin{array}{cccc}
1 / 10 & -1 & (-1)^{4}=1 \\
& 4 / 10 & 2 & 2^{4}=16 \\
& 4 / 10 & -2 & (-2)^{4}=16
\end{array} \\
& \text { step 2: Find } P_{Y}(y) \\
& \text { Note that } Y=X^{4} \\
& p_{x}(x) \quad x \\
& \begin{array}{l}
y \\
1^{4}=1
\end{array} \\
& \begin{array}{rlrl}
1 / 10 & 1 & 1^{4} & =1 \\
1 / 10 & -1 & (-1)^{4} & =1
\end{array} \\
& c=10 . \quad \begin{array}{cccc}
1 / 10 & -1 & (-1)^{4}=1 \\
& 4 / 10 & 2 & 2^{4}=16 \\
& 4 / 10 & -2 & (-2)^{4}=16
\end{array} \\
& c=10 . \quad \begin{array}{cccc}
1 / 10 & -1 & (-1)^{4}=1 \\
& 4 / 10 & 2 & 2^{4}=16 \\
& 4 / 10 & -2 & (-2)^{4}=16
\end{array} \\
& P_{Y}(y)= \begin{cases}1 / 5, & y=1, \\
4 / 5, & y=1 L \\
0, & \text { otherwise. }\end{cases} \\
& \mathbb{E}^{-} I=\sum_{Y} y P_{Y}(y) \\
& \begin{array}{l}
P[Y=2]=P[x=1]+P[x=-1]=2 / 10=1 / 5 \\
P[Y=16]=P[x=2]+P[x=-2]=8 / 10=4 / 5
\end{array} \\
& =1 \times \frac{1}{5}+16 \times \frac{4}{5} \\
& =\frac{65}{5}=13 \\
& P[y=1 L]=P[x=2]+P[x=-2]=8 / 10=4 / 5
\end{aligned}
$$

References

- From Discrete to Continuous Random Variables: [Y\&G] Sections 3.0 to 3.1
- PDF and CDF: [Y\&G] Sections 3.1 to 3.2
- Expectation and Variance: [Y\&G] Section 3.3
- Families of Continuous Random Variables: [Y\&G] Sections 3.4 to 3.5
- SISO: [Y\&G] Section 3.7; [Z\&T] Section 5.2.5

